Home
Class 12
MATHS
(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=...

`(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

d/(dx) [tan^(-1)(sqrt(x))] =

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

d/dx(tan^-1(x/sqrt(a^2-x^2))=

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t tan^(-1)x , where x ne 0