Home
Class 12
MATHS
Show that : cot^(-1) [(sqrt(1 + sinx) + ...

Show that : `cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

Differentiate w.r.t. x the function : cot^-1[(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))], 0

y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),find dy/dx.

Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in(0,pi/4)

Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in(0,pi/4)

Prove the following: cot^(-1)[(sqrt(1+sinx )+sqrt(1-sinx))/(sqrt(1+sinx)-\ sqrt(1-sinx))]=x/2,\ x (0,pi/4)

y = Cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] then (dy)/(dx) =

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=