Home
Class 12
MATHS
Let bar(alpha) = 3hat(i) + hat(j) " and ...

Let `bar(alpha) = 3hat(i) + hat(j) " and " bar(beta)=2hat(i) -hat(j)+3hat(k). "if "bar(beta)=bar(beta)_(1)-bar(beta)_(2)` where `bar(beta)_(1)` is parallel to `bar(alpha)` and `bar(beta)_(2)` perpendicular to `bar(alpha)` then
`bar(beta)_(1)xx bar(beta)_(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

If bar(a) = 4 hat(i) + 3 hat(k) and bar(b) = - 2 hat(i) + hat(j) + 5 hat(k) then find 2 bar(a) + 5 bar(b)