Home
Class 12
MATHS
Consider the following graph of the func...

Consider the following graph of the function y=f(x). Which of the following is//are correct?

`(a) lim_(xto1) f(x)` does not exist.
`(b) lim_(xto2)f(x)` does not exist.
`(c) lim_(xto3) f(x)=3.`
`(d)lim_(xto1.99) f(x)`exists.

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the following graph of the function y=f(x). Which of the following is/are correct? fig.lim_(x rarr1)f(x) does not exist.lim_(x rarr2)f(x) does not exist.lim_(x rarr3)f(x)=3

If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be correct (a) ("lim")_(xto1)f(x) ex i s t s a=-2 (b) ("lim")_(xto-2)f(x) ex i s t s a=13 (c) ("lim")_(xto1)f(x)=4/3 (d) ("lim")_(xto-2)f(x)=-1/3

Show that Lim_( xto 2) (|x-2|)/(x-2) does not exist .

Show that, lim_(xto4) (|x-4|)/(x-4) , does not exist

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

If f(x)={(x-|x|)/x ,x!=0 ,x=0,s howt h a t("lim")_(xto0) f(x) does not exist.

Sketch the graph of a function f that satisfies the given values: f(-2) = 0 , f(2) = 0 , lim_(xto-2)f(x)=0 lim_(xto2)f(x) does not exist.