Home
Class 11
MATHS
Let alpha~beta be the roots of x^2-ax +b...

Let `alpha~beta` be the roots of `x^2-ax +b =0` and `A_n = alpha^n + beta^n`~ then `A_(n+1) - a A_n +b A_(n-1)` is equal to (A) `-a` (B) `b` (C) `0` (D) `a-b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2)-a x+b=0 and A_(n)='alpha'^(n)+beta^(n) , then A_(n+1)=

If alpha,beta be the roots of x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n), then A . M of A_(n-1) and A_(n), is

Let alpha,beta be roots of the equation x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n),n in I then A_(n+2)+A_(n-2) is equal to-

If alpha, beta are the roots of a x^(2)+b x+c=0 and A_(n)=alpha^(n)+beta^(n) , then, a A_(n+2)+b A_(n+1)+c A_(n)=

If alphaa n dbeta are the roots of ax^2+bx+c=0a n dS_n=alpha^n+beta^n, then a S_(n+1)+b S_n+c S_(n-1)=0

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 and A_(n)=alpha^(n)+beta^(n) , then aA_(n+2)+bA_(n+1)+cA_n is equal to