Home
Class 12
MATHS
Let L1 be the line vec r1=2 hat i+ hat...

Let `L_1` be the line ` vec r_1=2 hat i+ hat j- hat k+lambda(i+2 hat k)` and let `L_2` be the line ` vec r_2=3 hat i+ hat j+mu(i+ hat j- hat k)` . Let `pi` be the plane which contains the line `L_1` and is parallel to `L_2dot` The distance of the plane `pi` from the origin is a. `sqrt(6)` b. `1//7` c. `sqrt(2//7)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let L_1 be the line vec r_1=2 hat i+ hat j- hat k+lambda(hat i+2 hat k) and let L_2 be the line vec r_2=3 hat i+ hat j+mu(hat i+ hat j- hat k) . Let pi be the plane which contains the line L_1 and is parallel to L_2dot The distance of the plane pi from the origin is a. sqrt(6) b. 1//7 c. sqrt(2//7) d. none of these

Let L_1 be the line vec r_1=2 hat i+ hat j- hat k+lambda(hat i+2 hat k) and let L_2 be the line vec r_2=3 hat i+ hat j+mu(hat i+ hat j- hat k) . Let pi be the plane which contains the line L_1 and is parallel to L_2dot The distance of the plane pi from the origin is a. sqrt(6) b. 1//7 c. sqrt(2//7) d. none of these

Let L_1 be the line r_1=2hat(i)+hat(j)-hat(k)+lambda(hat(i)+2hat(k)) and let L_2 be the another line r_2=3hat(i)+hat(j)+mu(hat(i)+hat(j)-hat(k)) . Let phi be the plane which contains the line L_1 and is parallel to the L_2 . The distance of the plane phi from the origin is

Let L_1 be the line r_1=2hat(i)+hat(j)-hat(k)+lambda(hat(i)+2hat(k)) and let L_2 be the another line r_2=3hat(i)+hat(j)+mu(hat(i)+hat(j)-hat(k)) . Let phi be the plane which contains the line L_1 and is parallel to the L_2 . The distance of the plane phi from the origin is

Show that the lines vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d vec r=(4 hat i- hat k)+mu(2 hat i+3 hat k) are coplanar. Also, find the plane containing these two lines.

Prove that the plane vec r=( hat i+2 hat j- hat k)=3 contains the line vec r= hat i+ hat j+lambda(2 hat i+ hat j+4 hat k)dot

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r = dot(2 hat i- hat j+ hat k)=4.

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r.(2 hat i- hat j+ hat k)=4.

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r . dot(3 hat i- hat j+ hat k)=4.