Home
Class 12
MATHS
If z(1) ,z(2) be two complex numbers s...

If ` z_(1) ,z_(2)` be two complex numbers satisfying the equation ` |(z_(1)+z_(2))/(z_(1)-z_(2))|=1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1),z_(2) are two complex numbers satisfying the equation : |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then (z_(1))/(z_(2)) is a number which is

If z_(1) and z_(2) are two complex numbers satisfying the equation |(z_(1) + iz_(2))/(z_(1)-iz_(2))|=1 , then (z_(1))/(z_(2)) is

If z_(1) and z_(2) are two complex numbers satisying the equation. |(iz_(1)+z_(2))/(iz_(1)-z_(2))|=1 , then z_(1)/z_(2) is

If z_(1) and z_(2) are two complex numbers satisying the equation. |(iz_(1)+z_(2))/(iz_(1)-z_(2))|=1 , then z_(1)/z_(2) is

If z_1, z_2 are two complex numbers satisfying the equation |(z_1 +z_2)/(z_1 -z_2)|=1 , then z_1/z_2 is a number which is :

If Z_1 , Z_2 be two non zero complex numbers satisfying the equation |(Z_1 + Z_2)/(Z_1 - Z_2)|=1 then (Z_1 )/(Z_2) + bar(((Z_1 )/(Z_2))) is__________

If z_(1) , z_(2) are two complex numbers satisfying |(z_(1) - 3z_(2))/(3 - z_(1) barz_(2))| = 1 , |z_(1)| ne 3 then |z_(2)|=

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then