Home
Class 12
MATHS
(xdy)/(dx)=y(log y-log x+1)...

(xdy)/(dx)=y(log y-log x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

solve x((dy)/(dx))=y(log y-log x+1)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

Express the following differential equations in the form (dy)/(dx) = F((y)/(x)) . (i) xdy - ydx = sqrt(x^(2) + y^(2))dx (ii) [x - y Tan^(-1)((y)/(x))] dx + x Tan^(-1)((y)/(x)) dy = 0 (iii) xdy = y(log y - log x+1)dx

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))