Home
Class 12
MATHS
The value of sum(n=1)^(10) {sin(2npi)/11...

The value of `sum_(n=1)^(10) {sin(2npi)/11-icos(2npi)/11}`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of sum_(m=1)^(10)[sin(2pim//11)-icos(2pim//11)] is

Find the value of sum_(k=1)^(10){sin((2kpi)/(11))-i cos ((2kpi)/(11))}

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

The value of sum_(k=1)^(10)((sin(2 pi k))/(11)-i(cos(2 pi k))/(11)) is

The value of is sum_(k=1)^(10)(sin"" (2k pi)/(11)+ icos ""(2k pi)/(11)) is