Home
Class 11
MATHS
x+iy=(a+ib)/(a-ib)," prove that "x^(2)+y...

x+iy=(a+ib)/(a-ib)," prove that "x^(2)+y^(2)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+iy=(a+ib)/(a-ib) , then prove that x^2+y^2=1

x + iy = (a + ib) / (a-ib), provethat x ^ (2) + y ^ (2) = 1

If x+iy = (a+ib)/aib .Prove that x^(2)+y^(2) =1 ?

If x-iy=sqrt((a-ib)/(c-id)) prove that x^(2)+y^(2)=(a^(2)+b^(2))/(c^(2)+d^(2))

If x-iy = sqrt((a+ib)/(c-id)) , prove that (x^(2) + y^(2))^(2) = (a^(2) + b^(2))/(c^(2) + d^(2))

If x-iy = sqrt((a+ib)/(c-id)) , prove that (x^(2) + y^(2))^(2) = (a^(2) + b^(2))/(c^(2) + d^(2))

If x-iy = sqrt((a+ib)/(c-id)) , prove that (x^(2) + y^(2))^(2) = (a^(2) + b^(2))/(c^(2) + d^(2))

If x-iy = sqrt((a+ib)/(c-id)) , prove that (x^(2) + y^(2))^(2) = (a^(2) + b^(2))/(c^(2) + d^(2))

If x-iy=sqrt((a-ib)/(c-id) , prove that (x^2+y^2)^2 = (a^2+b^2)/(c^2+d^2)

If x-iy=sqrt((a-ib)/(c-id)) prove that (x^(2)+y^(2))^(2)=(a^(2)+b^(2))/(c^(2)+d^(2))