Home
Class 9
MATHS
" If "(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)...

" If "(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0)," then show that "a,b,c" and "d" are in G.P."

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0), then show that a, b, c and d are in G.P.

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0), then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b +cx)/(b-cx)=(c+dx)/(c-dx) (x ne 0) , then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(xne0) then show that a,b,c and d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx) =(b+cx)/(b-cx) =(c + dx)/(c-dx) (x ne 0) , then show that a,b,c and d are G.P.

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0) , then show that a ,\ b ,\ c\ a n d\ d are in G.P.