Home
Class 12
MATHS
Prove that : "cos"^(-1)sqrt((2)/(3))-"...

Prove that :
`"cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cos^(-1)sqrt(2/3)-cos^(-1)""(sqrt(6)+1)/(2sqrt(3))

the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to:

The value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A)(pi)/(3)(B)(pi)/(4)(C)(pi)/(2)(D)(pi)/(6)])

the value of arc cos sqrt((2)/(3))-arccos((sqrt(6)+1)/(2sqrt(3)))is

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

The value of 2cos^(-1)sqrt((2)/(3))-2cos^(-1).(sqrt6+1)/(2sqrt3) is equal to

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6