Home
Class 12
MATHS
" 1."1+3+5+...+2n-1=n^(2)...

" 1."1+3+5+...+2n-1=n^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the middle term in the expansion of (x+1)^(2n)" is " (1.3.5. ......(2n-1))/(n!).2^(n).x^(n).

Find lim_(n rarr oo)((1.3.5...(2n-1)}(n+1)^(4)]+[n^(4)(1.3.5...(2n-1)) (2n+1)]

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))

"Prove that "(""^(4n)C_(2n))/(""^(2n)C_(n))=(1.3,5......(4n-1))/({1.3.5....(2n-1)}^(2))

Show that (.^(4n)C_(2n))/(.^(2n)C_(n))=(1.3.5......(4n-1))/({1.3.5......(2n-1)}^(2)) .

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)

Show that the middle term in the expansion of (x+1)^(2n) is (1.3.5.....(2n-1))/(n!) 2^n.x^n .