Home
Class 12
MATHS
Find the value of cot^(-1)(1)+sin^(-1)...

Find the value of
`cot^(-1)(1)+sin^(-1)((-sqrt(3))/(2))-sec^(-1)(-sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cot[(1)/(2)(sin^(-1))(sqrt(3))/(2)] is

Find the value of sec^(-1)(-2)+tan^(-1)(-1/sqrt3)

Find the value of sec^(-1)(-2)+tan^(-1)(-1/sqrt3)

Find the value of tan^(-1)sqrt(3)-cot^(-1)-sqrt(3)

The value of cos^(-1)[cot(sin^(-1)(sqrt((2-sqrt(3))/(4)))+cos^(-1)((sqrt(12))/(4))+sec^(-1)sqrt(2))

Find the value of 2tan^(-1)(1)-cos^(-1)(-(1)/(2))+3sin^(-1)((1)/(sqrt(2)))+2sec^(-1)((2)/(sqrt(3)))

Find the value of 2tan^(-1)(1)-cos^(-1)(-(1)/(2))+3sin^(-1)((1)/(sqrt(2)))+2sec^(-1)((2)/(sqrt(3)))

Find the value of cot((pi)/(2)-2cot^(-1) sqrt(3)) .

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)