Home
Class 12
MATHS
If A ,B and C are the angles of an equil...

If A ,B and C are the angles of an equilateral triangle, then the value of
`|{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C):}|` is ...........

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}| =0 then Delta ABC must be .

If A, B and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then the triangle must be :

In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

If A,B, and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C)|=0, then triangle ABC is a)Isosceles b)Equilateral c)Right - angled d)None of these

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.