Home
Class 12
MATHS
Let f be a differential function satisfy...

Let f be a differential function satisfying the condition. `f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0` If f'(1)=2`, then f'(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differentiable function satisfying the condition f ((x)/(y)) = (f(x))/(f (y)) (y ne 0, f (y) ne 0) AA x, y in R and f '(1) =2. If the smaller area enclosed by y = f(x) , x ^(2)+y^(2) =2 is A, then findal [A], where [.] represents the greatest integer function.

Let f be a differentiable function satisfying the condition f ((x)/(y)) = (f(x))/(f (y)) (y ne 0, f (y) ne 0) AA x, y in R and f '(1) =2. If the smaller area enclosed by y = f(x) , x ^(2)+y^(2) =2 is A, then findal [A], where [.] represents the greatest integer function.

Let f(x) be a differentiable function satisfying the condition f((x)/(y)) = (f(x))/(f(y)) , where y != 0, f(y) != 0 for all x,y y in R and f'(1) = 2 The value of underset(-1)overset(1)(int) f(x) dx is

"Let" f(x+y)=f(x)f(y) "for all x,y, where" f(0)ne0 . If f'(0)=2, then f(x) is equal to

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

The function f satisfies the relation f(x+y) =f(x) f(y) for all ral x, y and f(x) ne 0. If f(x) is differentiable at x=0 and f'(0) =2, then f'(x) is equal to-