Home
Class 12
MATHS
If y=(sin^(-1)x)^2 then prove that (1-x^...

If `y=(sin^(-1)x)^2` then prove that `(1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0 . Hence find y_(2) when x=0

If y=sin^(-1) x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=(cos^(-1) x)^(2) prove that (1-x^(2)) (d^(2)y)/(dx^(2)) -x(dy)/(dx) -2=0 . Hence find y_(2) when x=0.