Home
Class 10
MATHS
एक triangle ABC में, यदि AD, BC के लंबवत...

एक `triangle ABC` में, यदि AD, BC के लंबवत है तो सिद्ध कीजिए कि
(i) `AB^(2) + CD^(2) = AC^(2) + BD^(2)`
(ii) `AB^(2) - BD^(2) = AC^(2) - CD^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC, AD_|_ BC . Prove that AB^(2) - BD^(2) =AC^(2) -CD^(2)

In ABC,AD is perpendicular to BC. Prove that: AB^(2)+CD^(2)=AC^(2)+BD^(2)( ii) AB^(2)-BD^(2)=AC^(2)-CD^(2)

ABCD is a rhombus.Prove that AB^(2) + BC^(2) +CD^(2) + DA^(2) = AC^(2) + BD^(2)

In a Delta ABC , angleB is an acute-angle and AD bot BC Prove that : (i) AC^(2) = AB^(2) + BC^(2) - 2 BC xx BD (ii) AB^(2) + CD^(2) = AC^(2) + BD^(2)

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

If in DeltaABC, AD_|_ BC, then prove that AB^(2) + CD^(2) = AC^(2) + BD^(2)

ABCD is a rhombus. Prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)= AC^(2)+BD^(2) .

In a rectangle ABCD, prove that : AC^(2)+BD^(2)=AB^(2)+BC^(2)+CD^(2)+DA^(2) .

ABCD is a rhombus.Prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)