Home
Class 12
MATHS
" If "cos^(-1)(x)/(2)+cos^(-1)(y')/(3)=t...

" If "cos^(-1)(x)/(2)+cos^(-1)(y')/(3)=theta" then "9x^(2)-12xy cos theta+4y^(2)=x sin^(2)theta," then "x" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If Cos^(-1)(x//2)+Cos^(-1)(y//3)=theta" then "9x^(2)-12xycostheta+4y^(2)=

If cos^(-1)((x)/(2))+cos^(-1)((y)/(3))=theta, prove that 9x^(2)-12xy cos theta+4y^(2)=36sin^(2)theta

If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos theta+4y^(2)=36sin^(2) theta

If cos^(-1)(x/2)+cos^(-1)(y/3) = theta , prove that 9x^2- 12xycostheta+ 4y^2= 36 sin^(2)theta

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

If cos^(-1)x+cos^(-1)y=theta show that x^(2)-2xy cos theta+y^(2)=sin^(2)theta