Home
Class 12
MATHS
" 14.The function "f(x)=(2x^(2)-1)/(x^(4...

" 14.The function "f(x)=(2x^(2)-1)/(x^(4)),x>0" decreases for "x>1

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=(2x^(2)-1)/(x^(4)),x>0 decreases in the interval

The function f(x)=(2x^(2)-1)/(x^(4)), x gt 0 , decreases in the interval …………. .

The function f(x)=(2x^2-1)/x^4, x gt 0 decreases in the interval

The function f(x)=x^(4)-2x^(3)+1 is decreasing for

The function f(x)=(x)/(x^(2)+1) decreasing, if

Fill in the blanks: The function f(X) =(2x^2-1)/(x^4) . X> 0 is a decreaisng function in the interval.

The interval in which the function f(x)=(4x^(2)+1)/(x) is decreasing is

Show that the function f(x)=x^(3)+1/(x^(3)) is decreasing function in the interval [-1,1]-{0} .

find the interval(s) in which the function f(x)= (4x^(2)+1)/(x) , is decreasing.