Home
Class 11
MATHS
[" 23.If "A,B,C" are angles of a triangl...

[" 23.If "A,B,C" are angles of a triangle,"],[" prove that "cos2A+cos2B+cos2C=-4cos A cos B cos C-1.]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

IF A,B,C are angles of a triangle , Prove that cos2A+cos 2B+cos 2C=-4cosAcosBcosC-1

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

In a /_ABC prove that cos2A+cos2B+cos2C=-1-4cos A cos B cos C

Theorem 2:cos2A+cos2B+cos2C=-1-4cos A cos B cos C

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)