Home
Class 12
MATHS
" If "f(2)=4" and "f'{2)=1," then "limul...

" If "f(2)=4" and "f'{2)=1," then "limul(xf(2)-2f(z))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(2)=4 and f'(2)=4 . Then lim_(x->2)(xf(2)-2f(x))/(x-2) is equal to

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

if f(2)=4,f'(2)=1 then lim_(x->2){xf(2)-2f(x)}/(x-2)

If f'(a)=2 and f(a)=4 then lim_(xtoa)(xf(a)-af(x))/(x-a) equals to

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)