Home
Class 12
MATHS
" the "1" .If "n" is an integer then sho...

" the "1" .If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is integer then show that (1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 .

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

For a positive integer n show that (1+i)^n+(1-i)^n=2^((n+2)/2) "cos((npi)/4)

If n be a positive integer, then prove that (1+i)^n+(1-i)^n=2^(n/2+1)."cos"((npi)/4)

If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

A : (1+i)^(6)+(1-i)^(6)=0 R : If n is a positive integer then (1+i)^(n)+(1-i)^(n)=2^((n//2)+1).cos""(npi)/(4)

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

(1+i)^(2 n)+(1-i)^(2 n), n in z is