Home
Class 12
MATHS
38*int(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)...

38*int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

int_(1)^(e)(x^(4)ln x+2)/(x^(3)ln x+x)dx=(e^(2)+a)/(b)-ln(e^(2)+1) where a and b are positive integers then (a)/(b)=

-int_(1)^(e)((log x)^(2))/(x)*dx

int_(1)^(e)(ln x)/(x^(2))dx=

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx

int_(2)^(e)((1)/(ln x)-(1)/(ln^(2)x))dx

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

The value of definite integral int_(1)^(e)(dx)/(sqrt(x^(2)ln x+(x ln x)^(2))) is

Evaluate b int_(1)^(e){(1+x)e^(x)+(1-x)e^(-x)}ln xdx