Home
Class 10
MATHS
In Fig. 2.54, o is a point in the inter...

In Fig. 2.54, o is a point in the interior of a triangle `ABC,ODbotBC,OEbotACandofbotAB.` Show that
`OA^(2)+OB^(2)+OC^(2)-OD^(2)-OE^(2)-OF^(2)=AF^(2)+BD^(2)+CE^(2),`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Fig. 2.54, o is a point in the interior of a triangle ABC,ODbotBC,OEbotACandofbotAB. Show that AF^(2)+BD^(2)+CE^(2)=AE^(2)+CD^(2)+BF^(2).

In the given figure, O is a point in the interior of a DeltaABC, OD bot BC, OE bot AC" and "OF bot AB . Show that : OA^(2)+OB^(2)+OC^(2)-OD^(2)-OE^(2)-OF^(2)= AF^(2)+BD^(2)+CE^(2) .

In fig., O is a point in the interior of a triangle ABC, OD bot BC, OE bot AC and OF bot AB. Show that:- OA^2+OB^2+OC^2-OD^2-OE^2-OF^2=AF^2+BD^2+CE^2 .

In Fig.6.45,O is a point in the interior of a triangle ABC, OD_|_BC,OE_|_AC and OF_|_AB .Show that (i) OA^2+OB^2+OC^2-OD^2-OE^2-OF^2=AF^2+BD^2+CE^2

‘O’ is any point in the interior of a triangle ABC. If OD bot BC, OE bot AC and OF bot AB, show that (i) OA^(2) + OB^(2) + OC^(2) - OD^(2) - OE^(2) - OF^(2) = AF^(2) + BD^(2) + CE^(2) (ii) AF^(2) + BD^(2) + CE^(2) = AE^(2) + CD^(2) + BE^(2) .

‘O’ is any point in the interior of a triangle ABC. If OD bot BC, OE bot AC and OF bot AB, show that (i) OA^(2) + OB^(2) + OC^(2) - OD^(2) - OE^(2) - OF^(2) = AF^(2) + BD^(2) + CE^(2) (ii) AF^(2) + BD^(2) + CE^(2) = AE^(2) + CD^(2) + BE^(2) .

In fig., O is a point in the interior of a triangle ABC, OD bot BC, OE bot AC and OF bot AB. Show that:- AF^2+BD^2+CE^2=AE^2+CD^2+BF^2 . .

In the figure given below, O is point in the interior of a triangle ABC, OD _|_ BC , OE _|_ AC and OF _|_ AB . Show that (i) OA^(2) + OB^(2) + OC^(2) + OD^(2) - OE^(2) - OF^(2) = AR^(2) + BD^(2) + CE^(2) (ii) AF^(2) + BD^(2) + CE^(2) = AE^(2) + CD^(2) + BF^(2)

In the figure given below O is a point in the interior of a triangle ABC , OD bot BC ,OE bot AC and OF bot AB . Show that AF^(2) +BD^(2)+CE^(2)=AE^(2)+CD^(2)+BF^(2)