Home
Class 12
MATHS
If f:R rarrR is defined by f(x)=2x+|x| t...

If `f:R rarrR` is defined by `f(x)=2x+|x|` then `f(2x)+f(-x)-f(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R rarr R be defined by f(x)=2 x+|x| then f(2 x)+f(-x)-f(x)=

If f: R rarrR defined by f(x)=2x+|x| then f(3x)-f(-x)-4x=

If f:R rarr R be defined as f(x)=2x+|x| then f(2x)+f(-x)-f(x) is equal to

If f: R to R is defined by f(x) = 2x+|x| , then f(3x) -f(-x)-4x=

If f:R rarrR is defined by f(x)=x^(2)+3x+2, then f(x-1)=

If f:R rarr R is defined by f(x)=3x-2 then f(f(x))+2=

f:R rarrR defined by f(x)=e^(|x|) is

If f : R rarr R be defined as f(x) = 2x + |x| , then f(2x) + f(-x) - f(x) is equal to

If f : R rarr R be defined as f(x) = 2x + |x| , then f(2x) + f(-x) - f(x) is equal to

f:R->R is defined as f(x)=2x+|x| then f(3x)-f(-x)-4x=