Home
Class 14
MATHS
x-(1)/(x)=7" it "x^(2)-(1)/(x^(2))=?...

x-(1)/(x)=7" it "x^(2)-(1)/(x^(2))=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=7 then x^(2)+(1)/(x^(2)) is equal to

From 9+x-(1)/(x)=7 evaluate x^(2)+(1)/(x^(2))

(x^(2)-1)/(x^(2)+7x+1)

(x^(2)-1)/(x^(2)+7x+1)

If x+(1)/(x)=2 then x^(7)+(1)/(x^(7))=

int((x^(2)-x-1)/(x)+1)^(K+7)((x^(2)+1)/(x^(2)))dx is equal to ………………

If x=(7-sqrt(45))/(2) , find the value of (x^(3)+(1)/(x^(3)))-7(x^(2)+(1)/(x^(2)))+(x+(1)/(x)) .

(x^(2)-x-1)(x^(2)-x-7)<-5

(x^(2))/((x+1)^(2))+((x+1)^(2))/(x^(2))-(x)/(x+1)+(x+1)/(x)-(7)/(4)=p^(2)

(x^(2))/(x+1)+((x+1)^(2))/(x^(2))-(x)/(x+2)+(x+1)/(x)-(7)/(4)=p^(2)