Home
Class 11
MATHS
[" The minimum value of "],[((a^(2)+a+1)...

[" The minimum value of "],[((a^(2)+a+1)(b^(2)+b+1)(c^(2)+c+1)(d^(2)+d+1))/(abcd)" where "a,b,c,],[d>0," is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of ((A^(2) +A+1) (B^(2) +B+1) (C^(2) +C+1 )(D^(2) +D+1 ))/(ABCD) where A,B,C,D gt 0 is :

The minimum value of ((A^(2) +A+1) (B^(2) +B+1) (C^(2) +C+1 ))/(ABCD) where A,B,C,D gt 0 is :

The minimum value of ((A^(2)+A+1)(B^(2)+B+1)(C^(2)+C+1)(D^(2)+D+1))/(BACD) , wher A,B,C,D are positive

The minimum value ((A^(2)+A+1)(B^(2)+B+1)(C^(2)+C+1)(D^(2)+D+1))/(BACD) where A,B,C,D are positive

The minimum value of (sqrt((A^(2)+A+1)(B^(2)+B+1)(C^(2)+C+1)(D^(2)+D+1)))/(ABCD) is quad (where A,B,C,D) are positive real numbers)

Consider the expression ((a^2 + a + 1)(b^2 + b + 1) (c^2 + c + 1)(d^2 + d+ 1)(e^2 + e + 1))/(abcde) where a, b, c, d and e are positive numbers. The minimum value of the expression is

The minimum value of |z|+|z-1|+|z-2|is(A)0(B)1(C)2(D)4

If a+b=2c, then the value of (a)/(a-c)+(b)/(b-c) is (1)/(2)(b)1(c)2(d)3

If abcd=1 where a,b,c,d are positive reals then the minimum value of a^(2)+b^(2)+c^(2)+d^(2)+ab+ac+ad+bc+bd+cd is

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c