Home
Class 12
MATHS
The function f(x) =(e^(1//x^(2))/(e^(1//...

The function `f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =(xe^(1//x))/(1+e^(1//x))+sin""1/x" for "x ne 0, f(0)=0" at x=0 is

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

The function f(x) =[(x-1)/(1+e^(1/(x-1))]]" for "x ne 1, f(1)=0" at x=1 is"

The function f(x)=(1-cos x)/(x^(2))" for "x ne 0, f(0)=1" at x=0 is"

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0