Home
Class 12
MATHS
If z1=8+4i, z2=6+4iand arg((z-z1)/(z-z2)...

If `z_1=8+4i`, `z_2=6+4i`and `arg((z-z_1)/(z-z_2))=pi/4`, then 'z' satisfies `1) |z-7-4i|=1 2)|z-7-5i|=sqrt(2) 3)|z-4i|=8 4) |z-7i|=sqrt(18)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z1=8+4i,z2=6+4i and arg((z-z1)/(z-z2))=(pi)/(4), then z, satisfies

If z_(1)=8+4 i, z_(2)=6+4 i and arg ((z-z_(1))/(z-z_(2)))=(pi)/(4) then z satisfies

If z_1 = 8 + 4i, z_2 = 6 + 4iand arg ((z-z_1) / (z-z_2)) = pi / 4, then 'z' satisfies 1) | z-7-4i | = 1 2) | z-7-5i | = sqrt (2) 3) | z-4i | = 8 4) | z-7i | = sqrt (18)

If z_(1)=3-4i , z_(2)=2+i find bar(((z_(1))/(z_(2)))

If z_(1)=3-4i , z_(2)=2+i find bar(((z_(2))/(z_(1)))

If z_(1)=3-4i , z_(2)=2+i find bar(z_(1)z_(2))

If z_1 = 3 - 2i and z_2 = 6 + 4i , find (z_1)/(z_2) in the rectangular form.

Let z_(1)=6+i&z_(2)=4-3i Let z be a a complex number such that arg((z-z_(1))/(z-z_(2)))=(pi)/(2) then z satisfies

If z_(1) = 8 + 4i , z_(2) = 6 + 4i and z be a complex number such that Arg ((z - z_(1))/(z - z_(2))) = (pi)/(4) , then the locus of z is

If z_1=7+6i,z_2=2+2i and z_3=1-4i then find z_1-z_2+z_3