Home
Class 12
MATHS
If log(sqrt3) |(|z|^2 -|z| +1|)/(|z|+2)|...

If `log_(sqrt3) |(|z|^2 -|z| +1|)/(|z|+2)|<2` then locus of z is

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(sqrt3) ((|z|^(2)-|z|+1)/(2+|z|)) gt 2 , then the locus of z is

If log_(sqrt(3))((|z|^(2)-|z|+1)/(2+|z|))>2, then locate the region in the Argand plane which represents z

If (log)_(sqrt(3))((|z|^2-|z|+1)/(2+|z|))>2, then locate the region in the Argand plane which represents zdot

If (log)_(sqrt(3))((|z|^2-|z|+1)/(2+|z|))>2, then locate the region in the Argand plane which represents zdot

If (log)_(sqrt(3))((|z|^2-|z|+1)/(2+|z|))>2, then locate the region in the Argand plane which represents zdot

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is

If log_((1)/(sqrt(3))){(|z|^(2)-|z|+1)/(2+|z|)}gt -2 , then z lies inside