Home
Class 12
MATHS
यदि f तथा g निम्न प्रकार परिभाषित हों, ...

यदि f तथा g निम्न प्रकार परिभाषित हों, तो (gof)(x) ज्ञात कीजिए -
`g: R to R , g(x) = x^4 + 2x + 4` `f: R to R , f(x) = 2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R to R :f (x) = x ^(2) g : R to R : g (x) = x + 5, then gof is:

If f: R rarr R, f(x)= x-2, g: R rarr R, g(x)= x + 2 then (f+ g) (x) = ……..

If f, g : R to R such that f(x) = 3 x^(2) - 2, g (x) = sin (2x) the g of =

Let f(x) = 2x^2 and g (x) = 3x - 4 , x in R . Find gof

Let f : R to R : f (x) = (2x -3) " and " g : R to R : g (x) =(1)/(2) (x+3) show that (f o g) = I_(R) = (g o f)

If f: R to R and g: R to R are defined by f(x) =x-[x] and g(x) =[x] AA x in R, f(g(x)) =

If f : R to R , f (x) =x ^(3) and g: R to R , g (x) = 2x ^(2) +1, and R is the set of real numbers then find fog(x) and gof (x).

If f : R rarr R , f(x) = [x] , g : R rarr R , g(x) = sinx , h : R rarr R , h(x) = 2x , then ho(gof) = ..........

f:R rarrR , f(x) =x^(2) , g : R rarr R , g(x) = 2^(x) , then {x|(fog)(x) = (gof)(x)} = ............

Let : R->R ; f(x)=sinx and g: R->R ; g(x)=x^2 find fog and gof .