Home
Class 12
MATHS
The period of (cot (x//4)+ tan(x//4))/(...

The period of `(cot (x//4)+ tan(x//4))/(1+tan(x//2)-tanx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of (cot((x)/(4))+tan((x)/(4)))/(1+tan((x)/(2))-tan x) is

(cot x)/(cotx-cot3x)+(tanx)/(tanx-tan3x)=

Solve : tan(x-pi/4)tanx tan(x+pi/4)=(4cos^2x)/(tan(x/2)-cot(x/2))

prove that (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

Prove the following: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

Solve the equation tan(x-(pi)/4)tanxtan(x+(pi)/4)=(4cos^2x)/(tan(x/2)-cot(x/2).

tan4x = (4tanx (1-tan^2x))/(1-6tan^2x+tan^4x)

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

Prove that: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)