Home
Class 11
MATHS
sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)...

`sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^(@) then prove that the following sinA+sinB+sinC=4"cos"A/2"cos"B/2"cosC/2

Statement -1: sin52^(@)+sin78^(@)+sin50^(@)=4cos26^(@)cos39^(@)cos25^(@) Statement-2: If A+B+C=pi, then sinA+sin B+sinC=4cos""(A)/(2)cos""(B)/(2)cos""(C)/(2)

Statement -1: sin52^(@)+sin78^(@)+sin50^(@)=4cos26^(@)cos39^(@)cos25^(@) Statement-2: If A+B+C=pi, then sinA+sin B+sinC=4cos""(A)/(2)cos""(B)/(2)cos""©/(2)

If A+B+C=0^(@) then prove that sinA+sinB-sinC=-4"cos"A/2"cos"B/2"sin"C/2

If A+B+C+D=360^(@) then show that sinA-B+sinC-sinD= -4cos((A+B)/2)cos((A+D)/2)sin((A+C)/2)

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2