Home
Class 11
MATHS
sinA+sinB-sinC=4sin(A/2)sin(B/2)cos(C/2)...

`sinA+sinB-sinC=4sin(A/2)sin(B/2)cos(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

In triangleABC,A+B+C=pi ,show that sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C /2)

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

If A+B+C=180^(@) then prove that the following sinA+sinB+sinC=4"cos"A/2"cos"B/2"cosC/2

With the usual notation in DeltaABC det |(1,1,1),(sinA,sinB,sinC),(sin^(2)A,sin^(2)B,sin^(2)C)| assumes the value

If A+B+C=0^(@) then prove that sinA+sinB-sinC=-4"cos"A/2"cos"B/2"sin"C/2