Home
Class 10
MATHS
यदि किसी A.P. के प्रथम n , 2n, 3n पदों क...

यदि किसी A.P. के प्रथम n , 2n, 3n पदों के योग क्रमशः `S_(1) , S_(2)` और `S_(3)` हो , तो दिखाएँ कि `S_(3) = 3(S_(2) - S_(1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sums of n, 2n , 3n terms of an A.P. are S_(1) , S_(2) , S_(3) respectively. Prove that : S_(3) = 3 (S_(2) - S_(1) )

Let sum of n , 2n , 3n , terms of an A.P are S_(1), S_(2), S_(3) respectively. Prove that S_(3) = 3 (S_(2) - S_(1)) .

If the sum of n, 2n, 3n terms of an A.P are S_(1), S_(2), S_(3) , respectively, prove that S_(3) = 3 (S_(2) -S_(1)).

Let the sum of n, 2n, 3n terms of an A.P. be S_(1), S_(2) and S_(3) respectively. Show that S_(3) = 3(S_(2) - S_(1)) .

If the sums of n, 2n and 3n terms of an A.P. be S_(1), S_(2), S_(3) respectively, then show that, S_(3) = 3(S_(2) - S_(1)) .

S_(n+3)-3S_(n+2)+3S_(n+1)-S_(n)=0

The sum of first n, 2n and 3n terms of an A.P. are S_(1), S_(2), S_(3) respectively. Prove that S_(3)=3(S_(2)-S_(1)) .

The sum of n,2n,3n terms of an A.P.are S_(1),S_(2),S_(3) respectively.Prove that S_(3)=3(S_(2)-S_(1))

The sum of n,2n,3n terms of an A.P.are S_(1)S_(2),S_(3), respectively.Prove that S_(3)=3(S_(2)-S_(1))