Home
Class 12
PHYSICS
(a) Briefly describe the Young's double-...

(a) Briefly describe the Young's double-slit experiment of interference of light. Derive the expression for fringe width in the pattern.
(b) Monochromatic light of wavelength 588 nm is incident from air to water interface. Find the wavelength and speed of the refracted light. The refractive index of water is `4/3`.

Text Solution

Verified by Experts

The correct Answer is:
a

(a) A simple schematic diagram of Young.s double-slit experiment to produce interference pattern due to a monochromatic source of light is shown here. Let `S_(1)` and `S_(2)` be two narrow slits, a small distance .d. apart, illuminated by a monochromatic light source S of wavelength `lamda`, kept equidistant from the slits `S_(1)` and `S_(2)` and MN be a screen situated at a distance .D. from double-slit and it is parallel to double-slit. Then, we obtain alternate bright and dark fringes on the screen and the central point O of the screen is bright. Consider a point P on the screen MN, at a distance .x. from the symmetrical central point O of screen. Path difference between

light waves reaching point P from two slit sources is `S_(2)P-S_(1)P`, where
`(S_(2)P)^(2)=D^(2)+(x+d/2)^(2)` and `(S_(1)P)^(2)=D^(2)+(x-d/2)^(2)`
`therefore(S_(2)P)^(2)-(S_(1)P)^(2)=[D^(2)+(x+d/2)^(2)]-[D^(2)+(x-d/2)^(2)]=2xd`
`rArr(S_(2)P-S_(1)P)(S_(2)p+S_(1)P)=2xd`
or `(S_(2)P-S_(1)P)=(2xd)/((S_(2)P+S_(1)P))`
If x and dare very very small as compared to D, then `(S_(2)P+S_(1)P)` may be considered as 2D. Hence,
`[S_(2)P-S_(1)P]=(2xd)/(2D)=(xd)/D`
For constructive interference, path difference must be an integer multiple of `lamda` i.e., `(xd)/D=nlamda` where n = 0, 1, 2, 3, ... etc.
`thereforex=(nDlamda)/d` i.e., positions of various maxima (bright bands) will be given by :
`x_(0)=0,x_(1)=(Dlamda)/d,x_(2)=(2Dlamda)/d,x_(3)=(3Dlamda)/d` ........
For destructive interference, path difference must be an odd multiple of `lamda/2` i.e., `(xd)/D=(2n-1)lamda/2`, where n ::= 1, 2, 3, ... etc.
`rArrx=((2n-1)Dlamda)/(2d)` i.e., positions of various minima (dark bands) will be given by :
`x_(1).=(Dlamda)/(2d),x_(2).=(3Dlamda)/(2d),x_(3).=(5Dlamda)/(2d)` ......
Fringe width of the fringe pattern is defined as the distance between two successive maxima or successive minima. Therefore, considering two successive maxima, we have
Fringe width `beta=x_(n+1)-x_(n)=((n+1)Dlamda)/d-(nDlamda)/d=(Dlamda)/d`
(b) Here wavelength`lamda`= 588 nm and refractive index of water w.r.t. air `n =4/3`
We know that speed of light in air =`c=3xx10^(8)ms^(-1)`
`therefore` Speed of light in water v =`c/n=(3xx10^(8))/((4//3))=2.25xx10^(8)ms^(-1)`
and wavelength of given light in water, `lamda_(w)=lamda/n=(588nm)/((4//3))=441nm`
Promotional Banner

Topper's Solved these Questions

  • EXAMINATION PAPER 2020 (SOLVED)

    U-LIKE SERIES|Exercise SECTION C|8 Videos
  • ELECTROSTATIC POTENTIAL AND CAPACITANCE

    U-LIKE SERIES|Exercise SELF ASSESSMENT TEST|1 Videos
  • MAGNETISM AND MATTER

    U-LIKE SERIES|Exercise SELF ASSESSMENT TEST (Section D)|1 Videos

Similar Questions

Explore conceptually related problems

Monochromatic light of wvalength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected and (b) refracted light ? mu of water is 1.33 .

Interference fringes in Young's double slit experiment with monochromatic light are

A beam of menochromatic blue light of wavelength 4200 Ål in air travels in water of refractive index 4/3. its wavelength in water will be

In Young's double slit experiment if wavelength of light is doubled without changing other conditions, the fringe width will

The wavelength range of white light is 400 nm to 700 nm. What will be the wavelength range if light passes through water? Refractive index of water is 1.33.

Monochromatice light is refracted from air into glass of refractive index mu . The ratio of the wavelength of the incident and refracted waves in