Home
Class 12
MATHS
[" 7.If "f(x)=a+bx+cx^(2)" and "alpha,be...

[" 7.If "f(x)=a+bx+cx^(2)" and "alpha,beta,gamma" are roots of the equative "],[x^(3)=1" ,then "[aquad b,c],[b" c "a],[c,aquad b]" is equal to "],[" (a) "f(alpha)+f(beta)+f(gamma)],[" (b) "f(alpha)f(beta)+f(beta)f(gamma+f(gamma)f(c,)],[" (c) "f(alpha)f(beta)f(gamma)],[" (d) "-f(alpha)f(beta)f(gamma)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = a + bx + cx^(2) and alpha, beta, gamma are roots of the equation x^(3) = 1 , then |(a,b,c),(b,c,a),(c,a,b)| is equal to a) f(alpha) + f(beta) + f(gamma) b) f(alpha)f(beta) + f(beta)f(gamma) + f(gamma)f(alpha) c) f(alpha)f(beta)f(gamma) d) -f(alpha)f(beta)f(gamma)

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n \ |[a,b,c],[b,c,a],[c,a,b]| is equal to

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to a. f(alpha)+f(beta)+f(gamma) b f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) c. f(alpha)f(beta)f(gamma) d. -f(alpha)f(beta)f(gamma)

If f(x)=a=b x+c x^2a n dalpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to f(alpha)+f(beta)+f(gamma) f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) f(alpha)f(beta)f(gamma) -f(alpha)f(beta)f(gamma)

If f(x)=a=b x+c x^2a n dalpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to f(alpha)+f(beta)+f(gamma) f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) f(alpha)f(beta)f(gamma) -f(alpha)f(beta)f(gamma)

If alpha, beta, gamma are the roots of the equation x^(3)+ax^(2)+bx+c=0 , then alpha^(-1)+beta^(-1)+gamma^(-1) is equal to