Home
Class 14
MATHS
" What is the "(m-1)^(" th ")" root of "...

" What is the "(m-1)^(" th ")" root of "[(a^(m))^(m)-((1)/(m))]^((1)/(m+1))?

Promotional Banner

Similar Questions

Explore conceptually related problems

Simply {(a^m)^(m-1/m)}^(1/(m+1))

Find square root of (m+(1)/(m))^(2)-4(m-(1)/(m)):

If m-(1)/(m)=5 then find m^(2)-(1)/(m^(2))

The nth terms of an A.P. (1)/(m),(m+1)/(m),(2m+1)/(m),... is:

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is: (a) (2^(n))/(m+1)-n/(m+1)I(m+1,n-1) (b) n/(m+1)I(m+1,n-1) (c) (2^(n))/(m+1)+n/(m+1)I(m+1,n-1) (d) m/(m+1)I(m+1,n-1)

Write the nth term of the A.P. (1)/(m) , (1+m)/(m) , (1+2m)/(m) ,…

What is ( 1)/( a^(m-n)-1) + ( 1)/( a^(n-m)-1) equal to ?

Evaluate: lim_(nrarroo)(1^(m)+2^(m)+3^(m)+...+n^(m))/(n^(m+1))(mgt-1)

Show that the distance between (1,1) and ((2m^(2))/(1+m^(2)) , ((1-m)^(2))/(1+m^(2))) is independent of m.

If m+1=(5(m-1))/(3) , then (1)/(m)=