Home
Class 12
MATHS
[" 19The value of the integral "int(-1)^...

[" 19The value of the integral "int_(-1)^(3)(tan^(-1)(x)/(x^(2)+1)+tan^(-1)(x^(2)+1)/(x))dx" is equal to "],[[" (1) "pi," (2) "2 pi," (3) "4 pi," (4) "0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of the integral int_(-4)^(4)[tan^(-1)((x)/(x^(4)+1))+tan^(-1)((x^(4)+1)/(x))]dx equals

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

Evaluate: int_(-1)^3(tan^(-1)x/(x^2+1)+tan^(-1)(x^2+1)/x)dx

Evaluate the integral int_(0)^(1) x tan^(-1)x dx

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to