Home
Class 12
MATHS
If A = [[0, 1],[3,0]]and (A^(8) + A^(6) ...

If `A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[11]],`
where `V` is a vertical vector and `I` is the `2xx2` identity
matrix and if `lambda` is sum of all elements of vertical vector
`V`, the value of `11 lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r e I i s the 2xx2 identity matrix ), then the product of all elements of matrix V is _____.

A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r eIi s the 2xx2 identity matrix ), then the product of all elements of matrix V is _____.

If lambda vec(i) + 2lambda vec(j) + 2 lambda vec(k) is a unit vector then the value of lambda is ……………

A=[[0,13,0]] and A^(8)+A^(6)+A^(2)+IV=[[011]] (where Iis the 2xx2 identity matrix ), then the product of all elements of matrix V is

A=[0 1 3 0]a n dA^8+A^6+A^2+I V=[0 11](w h e r eIi s the 2xx2 identity matrix ), then the product of all elements of matrix V is _____.

Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I is the (2xx2 identity matrix). Then the product of all elements of matrix V is

A=[[0,1],[3,0]]" and let "BV=[[0],[11]]" Where "B=A^(8)+A^6+A^(4)+A^(2)+I," (Where "I" is the "2times2" identity matrix) then the product of all elements of matrix "V" is "

If lambda (2i - 4j + 4k) is a unit vector then lambda =

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.