Home
Class 12
MATHS
If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),the...

If ` y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

If y= Tan^(-1)""(sqrt(1+x^2) -1)/x then (dy)/(dx)=

If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________

If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

If y = tan^(-1)sqrt(1+x^2) then find (dy)/(dx) .