Home
Class 11
MATHS
Solve sin 2x - sin 4x + sin 6x = 0....

Solve `sin 2x - sin 4x + sin 6x = 0`.

Text Solution

AI Generated Solution

To solve the equation \( \sin 2x - \sin 4x + \sin 6x = 0 \), we will follow these steps: ### Step 1: Use the sum-to-product identities We can use the identity for the sum of sines: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] In our case, we can group \( \sin 6x \) and \( -\sin 4x \): ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    NCERT ENGLISH|Exercise EXERCISE 10.4|4 Videos

Similar Questions

Explore conceptually related problems

Find the general solution of the trigonometric equation: sin 2x - sin 4x + sin 6x = 0

Solve: sin 5x - sin 3x - sin x =0, 0^(@) lt x lt 360^(@).

Solve 4 sin x sin 2x sin 4x = sin 3x .

Solve sin 2x+cos 4x=2 .

Solve sin 2x+cos 4x=2 .

Solve sin 2x=4 cos x .

Prove that : sin 2x + 2 sin 4x + sin 6x = 4 cos^2 x sin 4x .

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

The solution of the equation sin 2x + sin 4x = 2 sin 3x is

Solve sqrt(5-2 sin x)=6 sin x-1