Home
Class 11
MATHS
Find the value of tan pi/8....

Find the value of tan `pi/8`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan \frac{\pi}{8} \), we can use the double angle formula for tangent. Here’s a step-by-step solution: ### Step 1: Identify the angle We know that: \[ \frac{\pi}{4} = 2 \cdot \frac{\pi}{8} \] This means we can express \( \tan \frac{\pi}{4} \) in terms of \( \tan \frac{\pi}{8} \). ### Step 2: Use the double angle formula The double angle formula for tangent is given by: \[ \tan(2x) = \frac{2 \tan x}{1 - \tan^2 x} \] Let \( x = \frac{\pi}{8} \). Therefore, we have: \[ \tan \frac{\pi}{4} = \tan(2 \cdot \frac{\pi}{8}) = \frac{2 \tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8}} \] ### Step 3: Substitute known values We know that: \[ \tan \frac{\pi}{4} = 1 \] Substituting this into the equation gives: \[ 1 = \frac{2 \tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8}} \] ### Step 4: Let \( t = \tan \frac{\pi}{8} \) Let’s denote \( t = \tan \frac{\pi}{8} \). The equation now becomes: \[ 1 = \frac{2t}{1 - t^2} \] ### Step 5: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 1 - t^2 = 2t \] Rearranging this results in: \[ t^2 + 2t - 1 = 0 \] ### Step 6: Solve the quadratic equation Now we can use the quadratic formula to solve for \( t \): \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 2 \), and \( c = -1 \): \[ t = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] This simplifies to: \[ t = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2} \] ### Step 7: Determine the correct value Since \( \frac{\pi}{8} \) is in the first quadrant, where tangent is positive, we take the positive root: \[ t = -1 + \sqrt{2} \] ### Final Result Thus, the value of \( \tan \frac{\pi}{8} \) is: \[ \tan \frac{\pi}{8} = -1 + \sqrt{2} \]

To find the value of \( \tan \frac{\pi}{8} \), we can use the double angle formula for tangent. Here’s a step-by-step solution: ### Step 1: Identify the angle We know that: \[ \frac{\pi}{4} = 2 \cdot \frac{\pi}{8} \] This means we can express \( \tan \frac{\pi}{4} \) in terms of \( \tan \frac{\pi}{8} \). ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    NCERT ENGLISH|Exercise EXERCISE 10.4|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

Find the value of tan (13pi)/(12) .

Find the values of cos pi/8

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

Find the value of cos^4 (pi / 8)

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4 , then find the value of x .

The value of tan (17 pi)/(4)

Find the value of : tan^(-1){tan(-(7pi)/8)}

NCERT ENGLISH-TRIGONOMETRIC FUNCTIONS-All Questions
  1. If sinx=3/5,cosy=-(12)/(13),where x and y both lie in second quadrant,...

    Text Solution

    |

  2. Find the general solution : sec^2 2x=1-tan2x

    Text Solution

    |

  3. Find the value of tan pi/8.

    Text Solution

    |

  4. If tanx=3/4, piltxlt(3pi)/2, find the value of sin(x/2) , cos(x/2), t...

    Text Solution

    |

  5. Prove that cos^2x+cos^2(x+pi/3)+cos^2(x-pi/3)=3/2.

    Text Solution

    |

  6. Find the principal and general solution of cosec x = 2

    Text Solution

    |

  7. Find the general solution : cos 4x = cos 2x

    Text Solution

    |

  8. Find the principal and general solution of sec x = 2

    Text Solution

    |

  9. Find the principal and general solution of cotx=-sqrt(3)

    Text Solution

    |

  10. Find the principal and general solution of tanx=sqrt(3)

    Text Solution

    |

  11. Find the general solution : sin x + sin 3x + sin 5x = 0

    Text Solution

    |

  12. Prove that cos 2xcos(x/2)-cos 3x cos((9x)/2)= sin5x sin((5x)/2).

    Text Solution

    |

  13. Find the value of sin (31pi)/3.

    Text Solution

    |

  14. Find the value of cos (-171 0^(@))

    Text Solution

    |

  15. If cosx=-3/5, x lies m the third quadrant, find the values of other f...

    Text Solution

    |

  16. If cotx=-5/(12), lies in second quadrant, find the values of other fi...

    Text Solution

    |

  17. The minute hand of a watch is 1.5 cm long. How far does its tip move ...

    Text Solution

    |

  18. If the arcs of the same lengths m two circles subtend angles 65oand 1...

    Text Solution

    |

  19. Convert 6 radians into degree measure.

    Text Solution

    |

  20. Find the radius of the circle in which a central angle of 60^@interce...

    Text Solution

    |