Home
Class 11
MATHS
Find the value of sin (31pi)/3....

Find the value of sin `(31pi)/3`.

A

`sqrt3/2`

B

`-sqrt3/2`

C

`2/sqrt3`

D

`-2/sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{31\pi}{3}\right) \), we can use the periodic property of the sine function. The sine function has a period of \( 2\pi \), which means that \( \sin(\theta + 2n\pi) = \sin(\theta) \) for any integer \( n \). ### Step-by-Step Solution: 1. **Identify the angle**: We start with the angle \( \frac{31\pi}{3} \). 2. **Reduce the angle**: We can express \( \frac{31\pi}{3} \) in terms of \( 2\pi \) to find an equivalent angle within the range of \( 0 \) to \( 2\pi \). \[ 2\pi = \frac{6\pi}{3} \] To find how many full rotations of \( 2\pi \) fit into \( \frac{31\pi}{3} \), we can divide \( \frac{31\pi}{3} \) by \( 2\pi \): \[ \frac{31\pi/3}{2\pi} = \frac{31}{6} \approx 5.1667 \] This means there are 5 full rotations of \( 2\pi \) and a remainder. 3. **Calculate the remainder**: To find the equivalent angle, we can subtract \( 5 \times 2\pi \) from \( \frac{31\pi}{3} \): \[ 5 \times 2\pi = 10\pi = \frac{30\pi}{3} \] Now, we subtract: \[ \frac{31\pi}{3} - \frac{30\pi}{3} = \frac{1\pi}{3} = \frac{\pi}{3} \] 4. **Use the sine function**: Now we can find: \[ \sin\left(\frac{31\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) \] 5. **Evaluate \( \sin\left(\frac{\pi}{3}\right) \)**: We know from trigonometric values that: \[ \sin\left(\frac{\pi}{3}\right) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \] ### Final Answer: Thus, the value of \( \sin\left(\frac{31\pi}{3}\right) \) is: \[ \frac{\sqrt{3}}{2} \]

To find the value of \( \sin\left(\frac{31\pi}{3}\right) \), we can use the periodic property of the sine function. The sine function has a period of \( 2\pi \), which means that \( \sin(\theta + 2n\pi) = \sin(\theta) \) for any integer \( n \). ### Step-by-Step Solution: 1. **Identify the angle**: We start with the angle \( \frac{31\pi}{3} \). 2. **Reduce the angle**: We can express \( \frac{31\pi}{3} \) in terms of \( 2\pi \) to find an equivalent angle within the range of \( 0 \) to \( 2\pi \). \[ ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    NCERT ENGLISH|Exercise EXERCISE 10.4|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin. (23pi)/(24) .

Find the value of (i) sin. (5pi)/(3)

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

Find the value of (a) sin(pi)/(10)+sin(13pi)/(10) (b) cos^(2)48^(@)=sin^(2) 12^(@)

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

Find the value of sin^(-1)(sin(3pi)/5) .

Find the value of sin^(-1)(sin.(5pi)/3) .

Find the value of: 3sin(pi/6) sec(pi/3) 4sin((5pi)/6) cot(pi/4)

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

Find the value of int _( 0) ^(pi//4) (sin x) ^(4) dx :