Home
Class 11
MATHS
Find the general solution : cos 3x + co...

Find the general solution : `cos 3x + cos x cos 2x = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 3x + \cos x \cos 2x = 0 \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \cos 3x = 4\cos^3 x - 3\cos x \] and \[ \cos 2x = 2\cos^2 x - 1. \] Substituting these identities into the equation gives: \[ 4\cos^3 x - 3\cos x + \cos x(2\cos^2 x - 1) = 0. \] ### Step 2: Simplify the equation Now, we can expand and simplify: \[ 4\cos^3 x - 3\cos x + 2\cos^3 x - \cos x = 0. \] Combining like terms results in: \[ (4\cos^3 x + 2\cos^3 x) - (3\cos x + \cos x) = 0, \] which simplifies to: \[ 6\cos^3 x - 4\cos x = 0. \] ### Step 3: Factor the equation We can factor out \( \cos x \): \[ \cos x(6\cos^2 x - 4) = 0. \] ### Step 4: Set each factor to zero This gives us two equations to solve: 1. \( \cos x = 0 \) 2. \( 6\cos^2 x - 4 = 0 \) ### Step 5: Solve the first equation For \( \cos x = 0 \): \[ x = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z}. \] ### Step 6: Solve the second equation For \( 6\cos^2 x - 4 = 0 \): \[ 6\cos^2 x = 4 \implies \cos^2 x = \frac{2}{3} \implies \cos x = \pm \sqrt{\frac{2}{3}}. \] ### Step 7: Find the general solutions for \( \cos x = \sqrt{\frac{2}{3}} \) and \( \cos x = -\sqrt{\frac{2}{3}} \) 1. For \( \cos x = \sqrt{\frac{2}{3}} \): \[ x = \cos^{-1}\left(\sqrt{\frac{2}{3}}\right) + 2n\pi \quad \text{or} \quad x = -\cos^{-1}\left(\sqrt{\frac{2}{3}}\right) + 2n\pi, \quad n \in \mathbb{Z}. \] 2. For \( \cos x = -\sqrt{\frac{2}{3}} \): \[ x = \cos^{-1}\left(-\sqrt{\frac{2}{3}}\right) + 2n\pi \quad \text{or} \quad x = -\cos^{-1}\left(-\sqrt{\frac{2}{3}}\right) + 2n\pi, \quad n \in \mathbb{Z}. \] ### Final General Solution Combining all solutions, we have: 1. \( x = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z} \) 2. \( x = \cos^{-1}\left(\sqrt{\frac{2}{3}}\right) + 2n\pi \) 3. \( x = -\cos^{-1}\left(\sqrt{\frac{2}{3}}\right) + 2n\pi \) 4. \( x = \cos^{-1}\left(-\sqrt{\frac{2}{3}}\right) + 2n\pi \) 5. \( x = -\cos^{-1}\left(-\sqrt{\frac{2}{3}}\right) + 2n\pi \)

To solve the equation \( \cos 3x + \cos x \cos 2x = 0 \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \cos 3x = 4\cos^3 x - 3\cos x \] and ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    NCERT ENGLISH|Exercise EXERCISE 10.4|4 Videos

Similar Questions

Explore conceptually related problems

Find the general solution : cos 4x = cos 2x

Find the general solution : sin 2x + cos x = 0

The general solution of cos x cos 6x =-1 is

Find the general solution of sin5x cos 3x = sin9x cos7x

Find the general solution of the trigonometric equation: cos 3x + cos x - 2 cos x = 0

The general solution of 4 sin^4 x + cos^4x= 1 is

The general solution of the equation 8 cos x cos 2x cos 4x = sin 6x//sin x is

Find the most general solution for 2^(sin x )+2^( cos x )=2^((1-(1/sqrt2)))

Find the most general solution of 2^1|cosx|+cos^2x+|cosx|^(3+oo)=4

Find the general solution of 1+sin^3x + cos^(3)x=(3)/(2)sin 2x