Home
Class 11
MATHS
Find the value of tan (13pi)/(12)....

Find the value of tan `(13pi)/(12)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\frac{13\pi}{12}\right) \), we can follow these steps: ### Step 1: Rewrite the angle We start by rewriting \( \frac{13\pi}{12} \) in a more manageable form: \[ \frac{13\pi}{12} = \pi + \frac{\pi}{12} \] This shows that the angle is in the third quadrant, where the tangent function is positive. ### Step 2: Use the tangent addition formula Using the tangent addition formula, we have: \[ \tan(\pi + \theta) = \tan(\theta) \] Thus, we can simplify: \[ \tan\left(\frac{13\pi}{12}\right) = \tan\left(\frac{\pi}{12}\right) \] ### Step 3: Express \( \frac{\pi}{12} \) in terms of known angles Next, we express \( \frac{\pi}{12} \) as the difference of two angles we know: \[ \frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4} \] Now we can apply the tangent subtraction formula: \[ \tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} \] where \( x = \frac{\pi}{3} \) and \( y = \frac{\pi}{4} \). ### Step 4: Find the tangent values We know: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \quad \text{and} \quad \tan\left(\frac{\pi}{4}\right) = 1 \] ### Step 5: Substitute into the formula Now substituting these values into the tangent subtraction formula: \[ \tan\left(\frac{\pi}{12}\right) = \frac{\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{\pi}{4}\right)}{1 + \tan\left(\frac{\pi}{3}\right) \tan\left(\frac{\pi}{4}\right)} \] Substituting the known values: \[ \tan\left(\frac{\pi}{12}\right) = \frac{\sqrt{3} - 1}{1 + \sqrt{3} \cdot 1} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \] ### Step 6: Rationalize the denominator To simplify further, we can rationalize the denominator: \[ \tan\left(\frac{\pi}{12}\right) = \frac{(\sqrt{3} - 1)(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} \] Calculating the denominator: \[ (1 + \sqrt{3})(1 - \sqrt{3}) = 1 - 3 = -2 \] Calculating the numerator: \[ (\sqrt{3} - 1)(1 - \sqrt{3}) = \sqrt{3} - 3 - 1 + \sqrt{3} = 2\sqrt{3} - 4 \] Thus, we have: \[ \tan\left(\frac{\pi}{12}\right) = \frac{2\sqrt{3} - 4}{-2} = 2 - \sqrt{3} \] ### Final Result Therefore, the value of \( \tan\left(\frac{13\pi}{12}\right) \) is: \[ \tan\left(\frac{13\pi}{12}\right) = 2 - \sqrt{3} \]

To find the value of \( \tan\left(\frac{13\pi}{12}\right) \), we can follow these steps: ### Step 1: Rewrite the angle We start by rewriting \( \frac{13\pi}{12} \) in a more manageable form: \[ \frac{13\pi}{12} = \pi + \frac{\pi}{12} \] This shows that the angle is in the third quadrant, where the tangent function is positive. ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    NCERT ENGLISH|Exercise EXERCISE 10.4|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan pi/8 .

Find the value of (a) sin(pi)/(10)+sin(13pi)/(10) (b) cos^(2)48^(@)=sin^(2) 12^(@)

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

Find the value of tan^(-1)(tan((3pi)/4))

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of tan^(-1)(tan((3pi)/4))

Find the value of cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4)) .

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))