Home
Class 11
MATHS
Prove the following by the principle of ...

Prove the following by the principle of mathematical induction:`\ n(n+1)(n+5)` is a multiple of 3 for all `n in Ndot`

Text Solution

Verified by Experts

We will prove it by using the formula of mathematical induction for all n ϵ N Let `P(n)=n(n+1)(n+5)=3d `where `d in N`
For `n=1`
`P(1)=1(2)(6)=12` which is divisible by 3
Let `P(k)` is true ...
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT ENGLISH|Exercise EXERCISE 4.1|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT ENGLISH|Exercise EXERCISE 7.1|6 Videos
  • PROBABILITY

    NCERT ENGLISH|Exercise All Questions|71 Videos

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction, prove that n(n+1)(n+5) is a multiple of 3 for all ninN .

Prove the following by the principle of mathematical induction: \ 11^(n+2)+12^(2n+1) is divisible 133 for all n in Ndot

Prove the following by the principle of mathematical induction: \ x^(2n-1)+y^(2n-1) is divisible by x+y for all n in NNdot

Prove the following by the principle of mathematical induction: \ 3^(2n+2)-8n-9 is divisible 8 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 5^(2n+2)-24 n-25 is divisible 576 for all n

Prove the following by the principle of mathematical induction: 1+3+3^2++3^(n-1)=(3^n-1)/2

Prove the following by the principle of mathematical induction: \ 5^(2n)-1 is divisible by 24 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 7^(2n)+2^(3n-3). 3^(n-1) is divisible 25 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 2. 7^n+3. 5^n-5 is divisible 24 for all n in Ndot

Prove the following by the principle of mathematical induction: 3^(2n)+7 is divisible by 8 for all n in Ndot

NCERT ENGLISH-PRINCIPLE OF MATHEMATICAL INDUCTION-EXERCISE 4.1
  1. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  2. Prove the following by the principle of mathematical induction: 1/(1...

    Text Solution

    |

  3. Prove by the principal of mathematcal induction that for all n in N. ...

    Text Solution

    |

  4. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  5. Prove the following by the principle of mathematical induction:\ n(...

    Text Solution

    |

  6. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  7. Prove the following by using the principle of mathematical inductio...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. Prove by the principle of induction that for all n N ,\ (10^(2n-1)+1)...

    Text Solution

    |

  11. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1+3...

    Text Solution

    |

  13. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  14. Using the principle of mathematical induction, prove that 1+1/(1+2)+...

    Text Solution

    |

  15. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  16. Using the principle of mathematical induction prove that : 1. 3+2. 3^...

    Text Solution

    |

  17. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  18. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  19. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  20. Prove the following by the principle of mathematical induction:1/2+...

    Text Solution

    |