Home
Class 11
MATHS
Prove by the principle of induction that...

Prove by the principle of induction that for all `n N ,\ (10^(2n-1)+1)` is divisible by 11.

Text Solution

Verified by Experts

Here, `P(n) = 10^(2n-1)+1`
`P(1) = 10^1+1 =11`, which is divisible by 11.
Now, we assume, for any number ` k, P(k)` is divisible by 11.
Then,`P(k) = 10^(2k-1)+1` is divisible by 11. `->(1)`
Now, we have to prove `P(k+1)` is also divisible by 11.
`P(k+1) = 10^(2(k+1)-1)+1`
`=10^(2k+1)+1`
`=10^2*10^(2k-1)+100-99`
...
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT ENGLISH|Exercise EXERCISE 4.1|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT ENGLISH|Exercise EXERCISE 7.1|6 Videos
  • PROBABILITY

    NCERT ENGLISH|Exercise All Questions|71 Videos

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in N : 10^(2n-1)+1 is divisible by 11.

Prove by the principle of mathematical induction that for all n in N ,3^(2n) when divided by 8 , the remainder is always 1.

Prove by the principle of mathematical induction that: n(n+1)(2n+1) is divisible by 6 for all n in Ndot

Prove by the principle of mathematical induction that for all n in N ,n^2+n is even natural number.

Prove by the principle of mathematical induction that for all n in N ,n^2+n is even natural number.

Prove the following by using the principle of mathematical induction for all n in N : x^(2n)-y^(2n) is divisible by x + y .

Prove the following by using the principle of mathematical induction for all n in N : 3^(2n+2)-8n-9 is divisible by 8.

Prove by using the principle of mathematical induction that for all n in N, 10^(n)+(3xx4^(n+2))+5 is divisible by 9 .

Prove by the principle of mathematical induction that 2^ n >n for all n∈N.

Prove by the principle of mathematical induction that n<2^n"for all"n in Ndot

NCERT ENGLISH-PRINCIPLE OF MATHEMATICAL INDUCTION-EXERCISE 4.1
  1. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  2. Prove the following by the principle of mathematical induction: 1/(1...

    Text Solution

    |

  3. Prove by the principal of mathematcal induction that for all n in N. ...

    Text Solution

    |

  4. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  5. Prove the following by the principle of mathematical induction:\ n(...

    Text Solution

    |

  6. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  7. Prove the following by using the principle of mathematical inductio...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. Prove by the principle of induction that for all n N ,\ (10^(2n-1)+1)...

    Text Solution

    |

  11. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1+3...

    Text Solution

    |

  13. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  14. Using the principle of mathematical induction, prove that 1+1/(1+2)+...

    Text Solution

    |

  15. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  16. Using the principle of mathematical induction prove that : 1. 3+2. 3^...

    Text Solution

    |

  17. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  18. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  19. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  20. Prove the following by the principle of mathematical induction:1/2+...

    Text Solution

    |