Home
Class 11
MATHS
Let z1=2-i ,z2=-2+i. Find (i) Re ((z1z2...

Let `z_1=2-i ,z_2=-2+i`. Find
(i) Re `((z_1z_2)/( bar z_1))`
(ii) Im`(1/(z_1 bar z_1))`

A

`2/5`

B

`-2/5`

C

`5/2`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will break it down into two parts as specified in the question. ### Given: - \( z_1 = 2 - i \) - \( z_2 = -2 + i \) ### Part (i): Find \( \text{Re} \left( \frac{z_1 z_2}{\overline{z_1}} \right) \) 1. **Calculate \( z_1 z_2 \)**: \[ z_1 z_2 = (2 - i)(-2 + i) \] Using the distributive property (FOIL): \[ = 2 \cdot (-2) + 2 \cdot i - i \cdot (-2) - i \cdot i \] \[ = -4 + 2i + 2i - i^2 \] Since \( i^2 = -1 \): \[ = -4 + 4i + 1 = -3 + 4i \] 2. **Calculate \( \overline{z_1} \)**: \[ \overline{z_1} = 2 + i \] 3. **Now compute \( \frac{z_1 z_2}{\overline{z_1}} \)**: \[ \frac{z_1 z_2}{\overline{z_1}} = \frac{-3 + 4i}{2 + i} \] 4. **Multiply numerator and denominator by the conjugate of the denominator**: \[ = \frac{(-3 + 4i)(2 - i)}{(2 + i)(2 - i)} \] 5. **Calculate the denominator**: \[ (2 + i)(2 - i) = 4 - i^2 = 4 + 1 = 5 \] 6. **Calculate the numerator**: \[ (-3 + 4i)(2 - i) = -6 + 3i + 8i - 4i^2 \] \[ = -6 + 11i + 4 = -2 + 11i \] 7. **Now combine the results**: \[ \frac{-2 + 11i}{5} = -\frac{2}{5} + \frac{11}{5}i \] 8. **Find the real part**: \[ \text{Re} \left( \frac{z_1 z_2}{\overline{z_1}} \right) = -\frac{2}{5} \] ### Part (ii): Find \( \text{Im} \left( \frac{1}{z_1 \overline{z_1}} \right) \) 1. **Calculate \( z_1 \overline{z_1} \)**: \[ z_1 \overline{z_1} = (2 - i)(2 + i) = 4 + 1 = 5 \] 2. **Now compute \( \frac{1}{z_1 \overline{z_1}} \)**: \[ \frac{1}{z_1 \overline{z_1}} = \frac{1}{5} \] 3. **Express \( \frac{1}{5} \) in terms of real and imaginary parts**: \[ \frac{1}{5} = \frac{1}{5} + 0i \] 4. **Find the imaginary part**: \[ \text{Im} \left( \frac{1}{z_1 \overline{z_1}} \right) = 0 \] ### Final Answers: (i) \( \text{Re} \left( \frac{z_1 z_2}{\overline{z_1}} \right) = -\frac{2}{5} \) (ii) \( \text{Im} \left( \frac{1}{z_1 \overline{z_1}} \right) = 0 \) ---

To solve the given problem, we will break it down into two parts as specified in the question. ### Given: - \( z_1 = 2 - i \) - \( z_2 = -2 + i \) ### Part (i): Find \( \text{Re} \left( \frac{z_1 z_2}{\overline{z_1}} \right) \) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT ENGLISH|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

If z_1=2-i ,\ z_2=-2+i , find : R e((z_1z_2)/bar(z_1))

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

If z_1=2-i ,\ z_2=-2+i , find : Im(1/(z_1bar(z_2))) .

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

Find Re ((z_(1)z_(2))/(z_(1))), give z_(1)=2-i and z_(2)=-2+i

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

NCERT ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. If (a" "+" "i b)" "(c" "+" "i d)" "(e" "+" "if)" "(g" "+" "i h)" "=" "...

    Text Solution

    |

  2. Convert of the complex number in the polar form: 1-i

    Text Solution

    |

  3. Let z1=2-i ,z2=-2+i. Find (i) Re ((z1z2)/( bar z1)) (ii) Im(1/(z1 b...

    Text Solution

    |

  4. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  5. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  6. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  7. Convert of the complex number in the polar form: i

    Text Solution

    |

  8. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  9. Find the real numbers x and y if (x-i y)(3+5i) is the conjugate of -6...

    Text Solution

    |

  10. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i).

    Text Solution

    |

  11. Convert of the complex number in the polar form: -1-i

    Text Solution

    |

  12. Find the modulus and the arguments of the complex number z = - 1 - is...

    Text Solution

    |

  13. Find the modulus and the arguments of the complex number z=-sqrt(3)+i

    Text Solution

    |

  14. Convert the complex number z=(i-1)/(cospi/3+isinpi/3)in the polar form...

    Text Solution

    |

  15. Find real theta such that (3+2isintheta)/(1-2isintheta)is purely real...

    Text Solution

    |

  16. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  17. Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i...

    Text Solution

    |

  18. Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)).

    Text Solution

    |

  19. Solve: sqrt(5)x^(2) + x + sqrt(5) = 0

    Text Solution

    |

  20. Solve x^2+x+1=0.

    Text Solution

    |